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= OP il CONERENCE ANI PHOTON sTATiSTIos
Nole an Numbering of Equations:

I the lectures which follow, references to fquations in the preceding reprint
are indicated by a capital R followed by the equation number.

Tecture X1 RADIATION BY A PREDETERMINED

CHARGE-CURRENT DISTRIBUTION

Not many problems of quantum electrodynamics are tnh any sense exacily sol-
able. But there does exist one simple, complately soluble problem which has
considerable physical menning. Tiat is the problem of finding the photon field
redidled by an electric current disiribution which s easentially classical in nature.
By “classical” is this case we mean Lhat wa may represent the current by a pre-
soribed veclor function of space and time, § (rt),

Sucl a model clearcly can not represent the process of radiation by an iadivi-
dusl atom, since the atomic curcant ig affected by radiation recolt in esguntially
unprediciable waya., The model may, however, be an excellent approximation for
dealing with radiation by aggregates of atoma which are large enough to show gta-
tistically predictable behavior for the total current vector. Naote that in saying thia
we are not at all ignoring the reaction of the radiation process back upen the car-
renl. All we require Is that whatever the reaction ls, it be predictable at least in
principle {as the radiation resistance of an anterna is, for example). It seems
likely ihat this model, when allowance ig made for statistical uneertainties in the
eurrent distribulion, will accurately account for the photon flelds generated by
Most macrascopie seurces.,

The interaction Hamiltonian which dese ribes the coupling of the gquiantized
eizctrumagnetio field to the current distribution takes the form

(8 =5 10, 0 - Afr, 1 dn. (12.1)

The state vector of the field changes with time in the Interaction represeniation,
obeying the Schrodinger equation :

st 16> = 301> | {12.2)

Now let us, as an abbreviation,

%E f1te, 0+ A, 9 dr.

introduce the operator B(t) which is defined as

B(t) = (12. %)
The operator B(t) iz simply a iisea: combination of values of the vector potential,
and hence abeys a commutation relation of the same general fype as the vector
pedential,  In general [ B{t}, B{i'}] will be different from zero, but it is always an
ordinary number,

Now the Schrédinger equation, Eq, (13,2}, can be rewritten as

d
ani>=B(t)!!>. {12.4)

Because of the operator character of B(t) the solution of this equition is not
13
e { [ BB} 1>

as it would be if B(t) we-e an ordinars number, However becaass of the simple
comim dtation relation cb2yed by the B's this expression will turn oul not to be quite
Ag wreng as we mighl perhaps expect,

We know that the state it > at e t can be expressed by mieans of unitary
operadar, U{L 1.}, appiied to the state Ity >agtimet,, Lo,

{12.5)
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dt> = Ul ta)lte> .

The equations which determine U{t, te} are evldengtly A

{12.%)

v = U :

ition Ult,, te) = 1 ) ‘ .
nd %e;:égx?lt:%ﬁve for E{Eu: ,oi:eratar U let us begin by dividiag the time intesval

{tq - £} inlo gub-intervals of length At extending between the Hmie; 2;) :htrzz;;x;
ha i 18 an integral. We may then reach the golution of 'Eq., { 1) thrg i
atmp lmitisg process, We asswne thal the operator B(#} is constant :u.v? -
sim;}le . " :gtk? sub»};‘stervals of time and allow its value to change ;t_“the imes
quruf E::;::e;h ia:wifui pleture of this varialion is shown in the ' graph of the

R T

operator B versus time given by Flg. 11, !
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Since the operator B ls constant ln each of the sub-interval%x* w8 Cin ea{siﬁlyl)
integrate the differential equation (12,7) for the indlvidual su‘h_-mte?als. H B{
takes on the value B, in the interval from {;.,to ¢t then we evidently ave
Ulty,t,,) = o {12.8)
' Hence the lransformation operator which corresponds to a suceessim?_‘gl' sub-inter-
vals must be

Ultatd = e e Pt e B RRERN

Now we can use the familiar theorem Inv muliolication of exponenti_a%s., E‘q {B®
;3. 20) to evalnate the product. For n= 2, for example we have ‘

' 1 2 10
Uits,te) =& B.f“e Bt exp{(B, +By) At-;.i.{Bz’ B.)(ab ). (12.19)
The repetition of similar multiplications clearly leads to
n
! (ay)? {12.11)
Ulto te) = exp {j; Bjat +5 5 [B,, By} (a)7 )

ok

which 1g an exact solution as long ae B{f) has the discontinuous time. ?gariation we
ha“\'?:s;'g t::.nr:xsider the case in which the operator ’B{_t) varies contlnuously \;zi:h
time to tie. the limit in which At=0, L. e., we agsume Lo =t remaing fixe.tli and le
n— s, In-that Mimnit Eq.. {12,412} becomes the general solution

utt ) = exp { [LB(edar + § fae [ ((e), oe)) (1212
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I we coknpéxm zhis solution with the expression {13, 5), which was reached by na-
ively lgnoring the operator character of B{t), we may see that the difference lien
only in the addition of the term

I t ¢ i 11
3 J;d.tf faer (B, B(e)] {12.13)

to the exponent. The commutator In this integral is an erdinary number and, in
fuct, apurelyimaginary one. lenca the solution (12.12) only differs from {12.5)
by a time dependeni phase factor, If we let L (t) represent the integral {12, 14),
then we may wrile the transformation operator as

Ut te) = exp { j:B(t') ar + 1 (1)}

T {12, 14)
exp {F{c’ fh Fr, ) 0 Adr,t) dt' dr+ 3¢ (1)

B

Although the phase function ¥ (1) 18 not aitogether lacking in phystcal interest,
{theve is information - ontained In {t, for example, on the intsr:.ction energy of the
curient and field) it dies not have ary influence on the calculation of density oper-
ators lor the field, l.e., if the density operator has the initial valie P{te), then ita
vaiue at time ¢ s

plt) = Ul 1) plty) Utit, to) {12,15)

and we gee immedialely tha: the phase factor cancals,
U in particular the initia} state is the vacuum siate

[ 3= | vae >, {12.18)
then at time t we have

e “igpft) i

t> = exp {ﬁ% Jo 1m0 At o) drac) Fvac> L (12,17

Now if we introduce the expansion of the operater A in normal modes, Eg. {R 2. 104,
we see that the unitary operator which lg appiied ta the vacuum state on the right

side of Eq. (12,17} is simply a product of displacement operators which take the
form .

Dulay). = expiaga[f-at a,}. (12,18)
Mare precisely, if we define the set of time:depexxdent amplitudes

; . . o
WO g S o 0 el arar (12,19

then Bq. {12.17) may be rewritten as

LTI ED:(an(i))EVE'c) s {12.20)

It is clear from this reswlt that - prescribed eurrent distribution, radiating
lnto the vacuurm, always brings the fl:ld to a coherent state

e itsa o)) > (12,21)
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Mora generally, if the field is lnitially in an arbltrary coherent state Is state re-
mains coherent-under the influence of the current distribution, 7, |

The solution to the radiation problem we have found takes accurate account of
the quantum mechanical properties of the field, 1t is related, however, in a sim-
ple way to the solution of the torregponding claasfeal problem. The :{mpiimdes
a,(t). are simply related to the time-dependent mode amplitudes for the classical-
ly radiated Held through Eq. (8.22), U

‘The density operator at time t which corresponds to the coherent state (12,21)
is Bimply FER T

Pty = Ha (0}> < {q,0}1, Do {1222
which may be written In the P-representation ag -

o0 = oo i al > <tall net, T 7 (aa
by making use of the P-function B

»({5,}) =0 8™ (g, gy (1)). T ey

The caleulations we have carried out have dealt with 4 predetermined carrent
distribution, 1.e., one which behaves in'a way which is in principle predictable,
But tn practice, of course, we may lack the information necessary to make such
predictions and may have to resort to 4 statistical description of the behavior of
the current, In that case, since we do not know the current ir, t) at any given
time, it becomes impossible to make an exact specification of (he sel.of amplitudes
a,(t} through Eq, (12,18)., The best We can do s to atate that the coetficients a,
have a certain probability distribution-p ({a,}, t) at ttme t whose dis iérston corre-
spands Lo whatever randomness is present. Then It {s clear that the density opera-
tor can be written In the form 8

o= [otlal ol > <{a}lf ¢a,, iz

which s a tairly general form for the P-represantation, but one in whick the fuac.
tion P ls nbvicusty always positive, *

Density operators having the general form o2 Ea. {12.25) with p{{a,},1) posi-

. tive may aziss {rom a variety of sources (e, g, » thermat radiators, diacharge tubes,

etc.). Hence i is interesting to note that oup arguments indicate that we can
always construct for these cases soma sort of random classical current distribution
which will lead ¢o the samae field, i, e,, the same denasty sperator, -

Lscture X100 PHASE-GPACE DISTRIBUTIONS FOR THE FIELD

In classical mechanies we can ppecliy the state of 5 gystem by giving the in-
stantaneong values of al} ecordinates and momenta, ' The evolution of tha aystem
then follows uniquely from the equations of motion, It can be visualized by con-
sidering the n coordinates ang n moementa of the system as the coordifates of a peint
in a 2n-dimensional space, the phase gpace, The point which repregents a aystem
in this space moves along a uniquely determined trajectory, This pieture g easily
adapted to the uges of classical statiatical mechanics, There, since we are char-
acterlstically uncertain of the initial coordinates and momenta of the syalem, we
can speak only of probability distributions Palp=oepyt, ai', oo+, quf) tor these
variables. Instead of following the motion of g single point through the, phase space,

- we.must follow the motion of 4 whole Peloud ' of them representing an ensemble

of similarly prepared systems, The expectation value of any function of the'p ) and
q,} can then be calculated by_means of an integral, involving the probability P, as
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& weight function. 7 .
There has been, since the earliest days of quantum mechanics, a prevailing
tempiation to use the same aorl of phase space piclure for the description of quan-

‘tum mechanieal uncertainties, We shall not attempt to discuss these represenia-
tiong here in mueh generality since ourinteresis are eonfined to the slectromagnetic

field, From a dypamical standpolnt, the oscillations of each mode of the field are
those of a harmonic osclllator, It will be quite suffictent, for the present discus-
sion, to conflne our attention to a single mode, In that case, the classteal phase
space has only two dimengions, eorresponding to the variables p' and g, ’E;he -
phase point for a mode with energy E moves c¢lassically along the ellipse p*® +0' g'
= 2 E. {The mass parameter s set equal to unity,)

A coherent state of the mode will exiat corresponding to any complex eigen-
value we specify for the operator

a= {2hw)" % (wg +1p) . (13.1)
The amplltude o corvesponding to the atate ja> may be writlen as
a= (M) (g +ip), {13.2)

where ' and p' are real numbers, MNow we havae shown in Section I of the reprint-
ed paper thal the stale |a > may be described by a wave packet which has mintmum
uncertainly and the mean coordinate g and the mean momentum p',

Furthermore i we use the Schrivdinger picture and follow the motion of the
state with time, we know that the state remaina coherent at all thmes, and that its
time-dependent amplitude i3 slmply ee ™', The motion of the ampiitude. vector
in the complex a-plane takes place on the circle |a| = const, which simply repre-
sents an ellipse of the type noted earlier in the ¢/, ¢ plane,

It is clear that the complex a~plane is simply a apecies of two-dimenaional
phase'space, One therefore inevitably feels a great temptation: to think of the
coherent state wave packels in terms of probabllity ' clouds' whose centers move
on circular paths. Such an image, however, is an intrinslcally classical one, In
guantum mechanics the chservables p and g are not simultangously measureable
{with more than limited accuracy}, -and therefore a certaln lack of meaning, or
at best an arbitrariness of meaning characterizes any attempt to speak of a joint
probability distribution {or the variables p and ¢'. -We can, of course, speak of
the distribution of either variable In precisely delined terms, but these are alter-
native descriptions of the cacillator rather than a way of dealing with p and @
simuftaneously, ) . o

The P-representation of the density operator, which we Introduced in the re-
‘printed paper, can often be regarded as defining something at least comparable to
a phase spaee distribution, The complex g-plane on which the P-function iz de-
fined, 18 indeed 3 species of phase space. Furthermors as we have noted in the
paper, the P-function has a number of properties in common with probability dis-~
tributions. However, as we have also seen, tha function may take on negative

values, and behave In singular ways which are altogether unlike those of a probabil-

ity density. There is nothing inconsistent sbout such atrange behavior because
the function is not accessible to measurement. as a joint probability distribution,

From the standpoint of similarity to.classical theory, the function P(a) ia
simply one of a class of functlons which possess, by definition, some of the prop-
erties of a phase space distribution and then inevitably lack others. We wil dis-
fuss qoma other examples of such functions, which are perhapa best called quasi-
probability densities, later in the lecture, and show their relation to the P-repre-
sentation, First, however, lat us turn to the question of how generally applicable
the P~representation s,

ettt
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;igxtyhof Helds, no effort was made there to characterize

= thead :r?ﬂ :1&230;%:::?0::1 i: ?er:ef naieé]‘ however, that a " diagonae representation
m3 of the eoherent states may be useqd to represe

an arbltrary tield, He has glven an explicit construction for the weight,}iumtio’: of

high-order derivatives of

s 38 4 consequencs of this canstruction, ‘the

al system .., is
equivalent to the description in terms of classical probability dislrtbutiofzzr.tl'PIEtEIy

The way in which Sudarshan's const
ruction for the function P(a).may b
Teached is a8 follows: ‘we consider the matrix elements of the.d’ensgty oger:mr tn

ths n-guantum stata repregentation ag
_ . on a8 known and note th reordi
12}, _ti}e_sa matrix elements are the complex moments, * aouordlfzg o Fa. (1.

A <alpim> = (nf m!)"*f?(a) {a*)"'cz“dga:',
of the weight functlon P{a}. We then consider this sequence of &qiu;ﬂﬂns for ali n

two-dimenaional moment prablem, L e.| we seek 3
The géiw'ra} probiem
.one which need ngt.
g:gitrufy_'l_natﬂx elements <nlpim > , have a rea;anable solution of apy s;rtor
arghan's solution corresponds o taking advantage of g !
erties of the delta fanction and its derivatives which are
lustrated in a one-~dimensional context,

Let us 8uppose that we are given. t o
he problem of Hrding 2 functigy §

interval == < x < @ which has a specified get of moments M, Le, ,-"we(i:‘:ivgn e
0 oy

.

ome remarksble prop-
perhaps mogt easily il-

'

T 100 xndes m,

| 1 n=0 1,32 - (13.3)
If we write the }-th derivative of the delta Tunction as -. -
8V (%) = %7 a(x), L a, "
then we obgerve that its méments are glven by ‘
Fxe6% ax - (-1) )1 g L
A e ‘ . {11.5)

In other words, each derivative of th
N ¢ delta functio
ishing moment. It would seem then that we can coz:ls
eral moment prohlem simply by writing
m

Hx) =) (mlﬁ Maa (),

n=s

has one and only one non-van-
truct a *solution®. of the gen-

(13. 8)

Mathematiclang have long noted tha the delta functlon and its &eflvat’l%es are

?l?:,tfﬁt;tctiyispeakmg, functions at all, More recently they have provided us with
ot ry of distributions {(or generalized fonctions): as 2 means of degling with
es% stma:_:?gx_'gg Iy more meaningful and rigorous terms, & oY
b ?ggzgogsﬂ (13.4) and (13.5) assume a well-deftned meaning in termis of dig-
b on theory, ‘but the tieory shows that these jg In generat no useful ‘meanin
which can be attached to an infinite sum such ag Eq. {13.8), T 5
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The *aclution' exhiblied by Sudarshan for the twe dimensional moment prok-
lem takes the explicit form

5 3 : * i *atin- 8 mn
4 i :! . jﬂ g‘n m' R ﬂ '
P =) L (_:?.n. ?miﬁ <niplm> goore ' (Coiap) ™ s1al)}

n=tm=o i {180

Yy _
where we have written o = Jate!f, Recently Holliday and Sage -ha;ftebshz\::;tged
consldering a simple example expltciti:,rl,‘hmat thislex:::sz::tn;a;‘f; theer ety
eneralized function of any sort. The example
i;::*agtar, and for it they showed that when the serlzs (l:!i vl}déaaﬁéfx{::lgi:fi?iig
anishes outs
exiremeley well behaved test funetion (which v
tegrated, the integral diverges.

dius in the e-plane), and the product is then integ X
rl\finmfel recently, c:amn‘ hag shown that whenever thera l§ no upper bo;;r;d to t:t:‘ s
number of guanta present, the series (13.7) wiil fail to be interpretable as

pution {or a generalized function). _
t whil; theseg results indicate that Sn&arﬁlran's ﬁ::g:!sa:d_ ‘;e&;ezeez;t::ﬂwlz Ingt‘,a

er

in general, meaningful, they leave open the larg e e e misht

- gentation. They allow the possibllity, in other words,
thiipgifter congtructions of the P*reprenentattm; wh::::; r;'e g;n::gul b;'f: ::lman-

tes of the fHeld. Recently, however, D. Kastler @
:tt:rjed that the P—-representz;um lacks the fzneralit;,; ?wzzssnrf;&é:p:?st:?fﬁd
staies. They have shown in particular that there ex i;‘.111 B e ot rhat
hich it is not possibie to find functions P(4) which are . ]

4 [moz.:as that all general resulls derived by using the P~reprgﬂentatl(.n must be guall

fied } y the asgumption 'hat the representation exista,
~

A POSITIVE-DEFINITE ' PHASE S8PACE DENSITY "

We will now consider seme othet examples of quasiprobgbiliti mtr;cuta;)f,th\:;t:
different lypes of behavio. and different degrees of ugefuiness. 'I‘l I : ::at >
is the diagonal element, < a lp la >, of the density operator, - I;llis ¢ e; e
is non-negative and that it is awell-delined function of a for " pih =)

a gouod deal closer to being a phage apace density in its heha\m:r6 1an »

From the general expreasion for R{a*, 8) given by Eq. {R 8.1},

R{a*, B} =<al 18> exp{%(ial’ + 181"},
we have .
Calpla>=Ria*, Qe . (13.8)

‘ is

Hence, according ta Eq. (R 6, @), the normalization condition on < a Iofa > ,
-+ “lat g 12.9
%f(aipta>d'a= + [R{a*, a) e da= 1. (13.9)

If the P-representation exista for the density operator p and has a weight function
P(A), we clearly have

<alpla >= [ P(AI<aip >1* &' (13.10)
K]
- frig oA @
The funciion we are considering is simply a Gausstan convolution of the P-function.

We can use the function < ajpla > to calewlate averages of products of opf;:]'am
tors which are Ln antinormal order in much the same way as products in norm

s

o

-
a
xer
]
o
e
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order are averaged by means of the

B-representation, Let us consiijer, for ex-
wmple, the average ‘ ' : ' '

- Te{oi@ k@), -
where Jand K ¢an be any functions of the annihilation and ereation o;i'eramrs, re-
spectively. S Co ' o
- We can write this average as St

Te{K(aNp J(a)} =§» T rel1e> <ark(ahe J{a)}da L

=~£— fd’a<aa<(a*)p3(ana>=l-l;f<: alia > Kle d(g)d'a. - (13.10)

Unforhinately we are not too often interested in evaluating the expeciation values of
antinormally ordered products of feld operators. When the full set of modes of
the flald 14 considered such expactation values tend to contain divergent conirtbu-
tions from the vacuum fuctuations. . T

‘The function <a|ple’> takes an intevestin

g form for the n-th exéited state of
the oscillator, For these states we have S

A =fn><nl m-airfaf)'lo><ﬁla’, ,. (13.12)

and therefore the result " '

in . 2 .
<alpla>=r | <an> 1t & l2l o -l o (g
This {8 an extremely well-behaved function, especially when we compare it with
the analogoug expreasion in the P-representation, which contains thie 2n-th deriva-
tive of & delta functlon. The function x ® ¢"* has a maximum at x.= n and is quite
sharply peaked there for large values of 5, H we want to express the result (13.13)
23 4 distribution In phase space we can substitute the ex

pression (13,2} for a and
. write R
_1 (ptrwtq*) P ewtg?g
<alpla> =7 ooy epl- Bl } g

Thia function evidently has its maximum value on the ellipse(l/2{p? + w? q'%) =
nfiw, that is to say on the classical orbit in phage space. It drops to zero on either
side of the classieal orbit while remalning positive averywhere. i

.~ Angther example for which we-can easily {lluatrate thig " phas
is that of the Gausalan density operator, For that case we have

H
¢ gpace density"

R(at,0) = [PO) explat y 00 - iyt ety .
S '
“ IS S exp{ 'ai-ﬁl;-w*r + gy - vty

~ 13, 18}
f+<n> o1’ {13,
TS samy gyl ety
% . 1
}" . which reduces the inte-

1
=vzps S exp {-1vl

We can now make the substitution £ = y{l—&t-%ﬁz
gral to the standard form ’ "
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. i
1 <ar_ 7 .
Rlat, 8) = sy Jom (- 1817 f[ T8 @ g < pen ) ot

1

T F<n> {13.18)

Hence we find
_ ~lai?
<alpin > = Rio*, ale
al®

1 a
“savasy el riast,

1f <n > goes to zero this expression becomnes the Gaussian function(1/7) exp(- la *).
In the same case the weight funciion P(a) would be a delta function at the origin.
I <n> goea to infinity we have

(13,17}

Jdat?
a % o Pla).

1 .
<am§a>gw<n> {13.18)
In this Hmit < a{pla > becomes equal to the P-distribution, That is so because
the Hmit of large < a > is just the classical limit. There P(a) does Indeed become
interpretable as a classical phase space density, and the distinction between normal-
Iy and antinormally ordered operators aiso vanishes, as 4 congequence of the
correspondence principle.

WIGNER'S " PHASE SPACE DENSIT ™

The Wigner distributlon can be considered as the grandfather of all our quasi-
probabilily functions. It exists and ts5 well-behaved for all quantum states but
seemas to take on negative values withowt hesitation, We shall follow the approach
used by Moyal® to define the Wigner distributlon, .

We begin by discussing a specles of characteristic function which s defined as

X {p, o) = <elepwas {13.19)
where p and q are operators. By using our thesrem for the decompositon of ex-
posentials, Eq. (R 3.20), we may write this expresslon as

g,

X(u, v) = Tr{p R N (13.20)

If we restrict consideration to a pure state, vae the ecordinate representation,
and recall the interpretation of exponential functions of the momentum as coordinate
displacement operators, we may rewrite Eq. (13.20) as

fi il

X(u, ) = Jur(an B2 ye ™ yiar+ B50) aov, (13.21)
where Y¥(q') is the wave function of the pure staie. The Wigner function is then the
Fourier transform of thia characteristic function

wip, ¢')= (21@3 fexp{-iup + vg) }XCu, ¥) didv

w(g#fexp{—i(uph wi)} Jysta -Ef-)ew x

P (g + "-A—aﬁ——-) da® du dv

o s e i st i
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. ) . .
=§§fﬂ wa*(q“ ~3§)_ (g - q) g+ }%}dq“ du

e 1 1 5 i
=g furta - 55y e W yg BBy gy, {13.22)

H we gubstitue ¥ = - pHin the latter ex n of i
ub pression we derive the f -
tion originally staied by Wigner, ¢ form of th.e distrib
1 1 : 8
Wi, q) = Jortg t37) e'EI Yig ~-2l~¥} dy. {13.23)
It is obyvious that whenever we have a wave function ive i
_ we can derive a Wigner

dist_ribution from it. Thus the distribution always exists, but it is not necegsaruy
positive. When we have a mixture of statez we must of course take a'su’uably
welghted average of {13, 23) over all the states which oceuy. .
The normalization condition for W(q, p)is

.

Jwia, v) dp dq = [atu) 6(v) XK(x, v} du dv _
= X(0, 0) B
A =1, R S RT3

To compare the Wigner distribution with the others we ks cus it i
wve disdussed, il is

uaeful to express it in terms of the creation and annikilation operators af and a
Then i we define'a complex Fourier transform variable o .

. 1 .
r=-uf B2} ny{-_,j-}}% ,

we may write the operator which oceurs In the expaonent of the chai:zxcferi‘stic
function as

(13.25)

P ]

-ipp+ ) = aaf - aea | -

Lt - (13.26)
and the characteristic function itself becomes ‘ o .
X (u, v) = <ghim
= Tr{pe™ e }o= F1a1 S
TNE -
= Tr{pe s gm'} o 7121 . (13.27)

We can now use the normally ordered form to express the Wigner lung;tton In terms
of the P-representation. If we assume that the density operator pogsesses a P-
repredentation, the characteristic Rinetion is given by o

¥

X, ) = [R(< pre o gogm 22l g Y

= [P(g) exp {ap* - a%g «%!Aé’}d“ﬁ . (13, 28)

In calculating the Fourier transform of X, 1. e., the Wigner funet'i“cn, it is

convenient to uge a linear combination of q and o* In the ex E
a i : ponent rather than a
combination of the classical variables ¢ and ', We therefore write |

L

Hup + v ) =2 g% - avg {13. 39)
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and
dudv = da (13.30)
Then the Fourier transform becomes
W(q! p’) = {ﬂé-;,!-}minf'rr{pa l{lt'h" e -k*in-g} }e %ikl d“k
¥
e [PB exp(A(p - a®) - 3%(8 - @) - § I} &N d’s (13.31)

We can reduce this integral to a standard form by the substitution £ J”" which
jeads to

wig, ) == S P(0) ex{/T £(8* - @) - VT EH(B - o) *‘tf.t’}é’& d*p

=o JP ) ew [ 2p-ar} d'p. (13.32

it s sometimes convenient to think dt the Wigner function more directly as a
function of the complex variable a, and to change its normalization accordingly.
We therefore recall that

dp' dgt
d*a= { w}%dp' dg = 4209
{Zﬁw}% i {13.3%)
and define the function
W(a) = Ziw(p', q') (13, 34)
80 that
Jwia) d*a=1 . (13, 3%)
The Wigner furction of complex argument ia then given by
. 1) aee f?
wia) == o) e da*g (13.36)
When we compare this expression with the one derived in the precedlng gection,
<alpja ™= J P(B) & ta-a da'p, {13,371

We see that both of these expresslona are simply Gausalan convolutions of the P-
distribution {when the latter exists). The quality which the Wigner distribution
shares with the P-distribution, of becoming negative in places, would seem to be
due to the faet that the avera%ing procers expressed by Eq, (13.38) lakes place
over a radius which is (vI) "' times smaller than that expressed by Eq. {13.37),
As an example, let us evaluate the Wigner distribution for a field described
by a Gaussian density operator, For this case we have, according to Eq. (13, 36),

a
Wia) smys fexp {- L <295} a%s

~atat? e
e Jew{- 0l (2 o) s2at arwales

m e vr—— e ——

Wigner distributiona.
..operator which may be written in the £csrm
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We now use the substitution y= {l{%&} } %43 to reduce the integral to the stand-

grd form , .
W < T exp (- 1y v 20502 s el
P {2<n>+1) Pi-ly 2gpsyyt Wera g

2 | <> G F Lo
® 2 (2<a>+1) fexn {- 17 Hezmst @ byx
4<n> -
exell sy - 2™} Te o (13.39)
The latter integral leads immediately to the result L '
2 2 2 ol
Y_N(a) *H{Inow 1) &P {- rSYS b e (13.40)

+

Thus, the Wigner distribution also has the Gausslan shape. We eom’iider again the
two limiting cases < n2>=19, for which
]
W{a) =;e-’i°i ) (13.41)

and <n> =, for which

1 Jat? L
RS e <nr = Pla) . ‘ ) -_;,.:
The latter result is the one we anticipate for the correspondence limit. -

The gimple Gaussian form given by Eg. (13. 40} may be used to derive the

complete set of Wigner distributtons for the n-quantum states. This-is possible
because the function {13.40) may be regarded as a generating function for the
Let ug congider, for a moment the general case of a density

Wia) =

{13.42)

p=(l-x f x* |a> <nl,

ns#

{13.43)
where x Is an arbitrary parameter. If we let W, {«} be the Wignér’{'uncuon for the

n-th quantum state, then, as a consequence of the linearity of W in p, we must
have

- W(a) =(1-x}§‘ W, (@) .
n=t

(13.44)

s

Now if we make the ldentificationx = < n >/(l +.<n >}, it becomes.clear from

‘Eq.{ R 8.10) that p given by Eq. {13, 43} I8 simply the Gaussian densnly operator.

We can therefore write Eq. ( 13. 40) alternatively in terms of the variable X as

1 -

W{a) "m exp { 2( )ia['}
‘iﬁhﬂ ""{1», 4fal’} exp {-21al’} {13. 45)

This rather complicated exponential is just the generating iunction fhr Ithe Laguerre
polynomilals L,.

In more familiar notation the generating function reads as

¥



Hence Eq. (13,45} yields the expansin

29 L1 alal?
wia = (-0 2 ) ox Bl gapyettel”
g
The Wigner function for the n-th excited state of the oscillator may thus be identi-
fied a8 .
2{-1}" -
W, (a) = - Lﬁalﬁ La{4lal?) & fal”

These functions have quite a wiggly behavior in the complex phése plane. The n~th
function has nodes on n concentric circles. . . -
For the Mrst two states we have, more explicitly,

2 V2 1,3
Wg(a)z—ge'”“r x%&xp{-ﬁ————%ﬁ(—:’w&m} (13, 48)

Wila) ~-§ (4lal® - 1) gtlel® (15, 49)

The functicn Wi {a) 18 skeiched In Fig, 12

PW,(Q}
i
, ‘/2/}\‘-— el
R ¢ e
Fi-ure 12

Its maximum lies at the radius g = v373.

. Each of the functions we have congidered (the P-functlon, the function,
<alpla>, and the Wigner distribution) has its particular advantages. 1t should,
however, be clear from the preceding discussions that we can eohstruct numerous
other such functiong, each with virtues of its own. An element of arbitrariness
underlies all such discussions of phase space distributions.

Note added in proof: In a recent preprint, Klauder, McKenna, and Currie
confirm the conclusion that no usefol welght function P need exist for arbitrary
density operators. To minimize this difficulty they express matrix elements of
the density operator through a limiting procedure involving an infinite sequence
of oparators expressed as P-representations. Thia procedure, however, does not
preserve the most useful property of the P-repregentation, the reduction of sta-
tistical averages to simple integrals over the complex a-plane,
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Lecturs XIV CORRELATION FUNCTIONS AND ot
QUASTPROBABILITY DISTRIBUTIONS .

In this lecture and in the ones which follow we shall begin to discuss applica-
tions of our formalism in somewhat more concrete terms. As a firststep in that
direction it will be-ugeful to amplify several of the points which are Btated rather
briefly in the last section of the reprinted paper. .

Let us suppose that the glectromagnetic field 1s in a pure coherent state which
we denote by |{ax} >. Then [{ax} > i3 an eigenstate of the operatar Ef+),

.EM(-‘rt)'I“{:ai}} = &(rt {a P i{m} >. (14.1)

and the corre'ﬂpo_nding' elgenvalue funetion €, is & linear form in the variables
{ai}, Loel; we have : ' e

Strt{a,}) =t f@ﬁ) “ufr)e ™ 4, T (14.2)
T2 X k ..

The corresponding Ileid is fuily coherent since the correlation functions for all
orders a fall into the factorized form

{n)

Cuve o pa,

" in )
(X100 iXp) =11 6 (x]{ak}) né, (xfa .
jet ] jnet 1 )

(14.3)

We have already noted that the term " coherence' is used {requently in the
discusgion of quantum mechanical problems of all sorts. Since the term s usually
meant to imply that Interference phenomena can take place; many of its uses are
to be found in:discussions of pure quantum mechanieal states. Pure states, how-
ever, by.no means exhaust the possibilities of securing interference.. For most
quantum.mechanical systems there exist certain statistical mixtures of stiles
which preserve essentially the same Interference phenomena as are found for pure

.mtates. It Is easy to exhibit these mixtures for the case of ths electromagnetic

field and to show that they may correspond to {lelds which are fully coherent in the
sense of Eq. (14.3). ' o

Instead.of considering the fleld which correaponds to the set of amplitudes
{a,}; let us consider the field corresponding to a set {ay'} which we obtain by
multlplying each of the coefficients ay by a phase factor, &', which s the same
for all modés.  If we have ' .

o, = e“.ai, (14.4)
then, since the -elgenvalu'e,tuncliqn, §,.i8 linear, we must have

Gu(?r t{a'}) =e** su(rt{a,}). { 14.5)
Becauge the phase factors ¢ancel when we construct the correlation functions, it
1s clear that'the altered state of the field leads to the same set of correlation
functions {14.3) as the driginal state, This invariance property, which is implicit
in our definition of the correlation functions, means that we sectre the same cor-
relation functions not only for pure states ¢orresponding to different values of
the phase ¢, but for arbitrary mixtures of such states as weil.

-Liet ua guppose that £.{¢} is 4 function which satisfies ihe normalization con-

Y .
.J; £(¢) d¢ = 1. {14.8)
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Then we may construct a density operator
T E
o= .{) L{g Ha e} > < {a:a”}ld@

which represents mixtures of states with different values of the overalt phase ¢,
{Note that £{ ¢ must also statisfy a positive definiteness condition analogous to
Eq. {R 7.8 All such mixtures, L, e, all cholces of 2 {9}, lead to precisely the
sel of correlation functions {14, 3); hence 21l such mixed states eoarrespond to fully
coherent fields, o

It i3 most important, from a practical standpoint, that our definitions permit
these mixed states to correspond {o coherent fields, Our g priori knowledge of
the state of high frequency fields usually containg no Informatlon about the overall
phase ¢, An ensemble of experiments performed with such flelds must then be
described by uaing a density operator ef the farm {14, 7) with the special choice,

(14.7)

£(#) =5, (14.8)
which represents our total ignorance of the phase, The indefinlte character of

this phase daes not influence any of the Interference Lntensitles we have discussed
thus far, " R must therefore bave no bearing on the coherence properties of a feld,
Our definition of coherence would hardly be very uselul physically if it did not allow
the appropriate mixed states as well as pure ones tc be coherent.

FIRST ORDER CORRELATION FUNCTIONS FOR STATIONARY FIELDS

Virtually all of the famous experiments of optics may be described in terms
of the lirst order correlation function for statiopary light beams. Let us begin
the evaluation of such a correlation function by using the normal mode expansion
5_9:“ the field operators to write H in the form

e

o [RRY ' ;
J G“u {rt, r'v):-é E ﬁ{“’x“’r)i Tr{.p a;1 ap} x
PR

]
W D up (1) e

{14.9)
To evaluate the statistical averages Tr {pa’y ayn} we first note that these will
always vanish when the modes k and k' are non-degenerate. We may prove that

they vanish in this ease by recalling that for stationary fialds p commutes with the
field Hamiltonian 3. Thus we have, for example,

1 1
p:e'ix‘" pe‘m . {14, 10}

for al’ values of the parameter t. If we substitute the latter form Inr the operator
Into the sxpression for the desired tracewe find

i -4
vripal, ap} = rrfpe B, 1 ap o 5}

A 1] (1411

=Trlpa, aL e .

jince the trace s independent of the parameter t, it must vanish whenever wy =wy.,

For the case of two different but degenerate modes, kandk', on the other hand,
he quantity Tr(p 2, ay) need not vanish. More generally, if there are N de.
ienerate modes the corresponding averages Tr{p aﬁ 2 ) can be regarded as
‘orming the elements of an N X N Hermitian matrix which is not, in general, diag-
mal. It is always possible to diagonulize this matrix, however, by means of a

e
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linear transformation which amounts stmply fo a redefinition of the set of degen-
erate mode functions. For any stationary state of the field represented by a den-
gity operator g, In other words, there will exist some particular choice of mode
functions ny (r) suchthat the matrix reduces to diagonal form, i e we haye

Trip a,l ap) =<ny > by, (14.12)
where <ny > i3 the mean occupation number of the k-th mode,

The convenlence of working with particutar cholces of degenerate mode func-
tions is easlly illustrated by means of the polarizatton properties of light beams.
For any plane wave state of a beam there are two degenerate polarization modes
which are othogonal. H we were to choose & palr of plane pelarization states as a
basis, and ‘¥ere to describie.a circularly polarized beam, for example, -the quanti-
ties Tr{pa,® ap )} would form a 2 x 2 matrix with four non-vanishing components.
It is no surprise then that-a more convenient choice of mode functions for that case
consisis of the two orthogonal circular polarizations. That choice reduces the
matrix to one with only 2 single non-vanishing component}

Let us now return to our calculation of the firat order correlation function for
atationary fiélda, We-aee from Egqs. {14.12) and (14.8) that with a suitable cholce
of basis funclions it {s always possible to write the correlation function as an ex-
pansion of the form S )

G O ) =g Then>ug, (D te) oMY L (e
which is determined simply by the zet of average occupation numbers < ng >, An
expansion of this type which is often useful {3 based on the set of plane wave modes
of a large cublcal volume of side L, These modes, whose functions uy(r) are
given by Eq. (R 2.9), are so densely distributed in the space of the propagation
vector k, -when the volume of the system is large,. that the sum over the states re-
quired in Eq. (14.13) may be replaced by the integral (L/27)° f dk... ; The ex-
pansion of the correlation function is then B o
n 5

) fie .
(w, f't)= 5oy J 7 ¢ <ay,>k x
. ).:i’:

T,
e

G

exp { ~i[k {r-r)-u(t-r)]} dg {14.14)
where A is an Index which labels the polarizations associaled with propagation
vector,

Let us suppose that the field consists of a well collimated light beam which is
nearly monochromatic and is fully polarized. Then the mean orcupatign number
< ng> will only take on non-vanishing values within a very small cell of k-space
ard, say, for A'=-1," Under these circumstances, if the magnitudes of fr - | and
¢ |t ~ '] remain smal] in comparigson ta the reciprocal dimensions f the volume
in which < i g 3> differs from zero, it becomes possible to approximate the jn-
tegral in Eq. {14.14) by neglecting the variation of the exponential tn the integ rand,
If ky and uy are the mean propagation vector and frequency of the heaxix_we have

[ )
Gt {rt, ) =

fe (80 (0, Ak {e-t) gt ]
v wms N & e (4. 18)
where "
N= [ <n,;>dk (14.16)
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The Eighl beam we have deseribad is of juat the sort most often used in interference
experiments. It ls also the kind teost oflen referred Lo as *'zoherent' in the tra-
ditlonal terminclogy of optics, Now it is evident that by defining the field

§{r, ) =§ e {N ; N (14.17)

A2y
we may write the expression {14, 15) for the correlation function in the factorized
form

iy 1Yo * §

Gy, OLTU)= & (rt) ¢ (0r), {14.18)
Hehce the field in question does indeed satlafy the condition for first order coher-
ence. It Is worth emphasizing, howe ver, that the factorization in Eq. (14.18) is
an approximate one which tends to be most accurate for points r', t* near r, t.
The tmperfect collimatton and manochromaticlty of the beam define finite ranges
of the variables r - r' and t - I, i.e. coherenca distances and a coherence time,
within which the factorization condition is ebeyed. These rangea can, In principle,
bae made arbitrarily large by Impraving the quality of the beam,

This example illustratea the sense in which the coherence conditions must
usually be regarded as idealizations, Given the practical sorte of field sources at
our disposal, we cannot expect that the field correlations they generate will obey
the coharence conditions over infinite ranges of the coordinate variables {even

though in the case of laser fields these conditions may be known to hold over tens
of thougands of miles),

CORRELATION FUNCTIONS FOR CHAOTIC FIELDS

A particularly tmportant class of stationary Helds, which arises whenever the
source 18 essentially chaotic In nature, is one in which tha weight function in the
P-representation is a product of Gaussian factors, one lor ezch mode, The denaity
operator lg then apecifled by

a3
Pllaxh =0l soees 0" 5 {14,19)

wnd i follows that all of the stattstical propertiea of the fleld are determined by
*he set of average occupation numbers <ny >. The knowledge of this same set of
umbers, on the other hand, ls equivalent, according to Eq, (14, 13), to specifying
‘he first order correlation function for the field. There thus exists 2 fundamental
senge in which the first order correlation function furpishes all the information we
1weed far the description of ftelds specified by Gaussian weight functions, We may
temonstrate this simplitying property more explicitly by showing that all of the
vgher order correlation functions for Buch fields can be expressed as sums of
sroducts of first order correlation fig ctions,
In order to prave this theorem we shall construet a species of generating

unctional for the set of gl correlation functions of the fleld. The egsential tool
‘or doing this is the aperation of functional differentiation. If F(x)] 1a a func-
lonal of {{x), i.e. a function of the set of values of {{x) for all x, then we define
ta functional derivative with respect to {(xs) to be

5,;—%» - lim 21“ [FiE 0+ 60 ( -x)] -F(E0 ]}, (14.20)
vhere 8" is 3 four-dimensional {space-time) delta function. As an Hlustration,
{ we apply this definition to an integral operator of the form
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F= Jr(g E“}(x)tt‘x ) {i4. 21
we find o
aF - .
By =S oM ix - x £M d'x= 8" (). (14, 22)
Now, let ua_deﬁne the generating functional
— L P {4
Z[E(x), n(x)] = Tr {p e ET i)l (o) ate } {14. 23

which depends upon two Independent funetions £(x} and n{x} and is the {race of &
normally ordered product. Then Wwe easily see that the funcliona] derivatives of
‘this expression, evaluated for Ci(x} =n(x) = 0, are the correlation functions of
the field; i. 8. we have

ot - o o e i T
6(()!1501}()(3’ = ‘;:q:ﬂ = Tr i EV " () E (x:3) = G (%0, %2},
{14, 24)
and more generally
el - o
,GC(xi)_‘"-6E(X|}@7(xmi)"’fﬂ{x‘;n—} T s Y0 e x ek ),
T : {14, 25)

{The te’néor_indices which have been suppressed in these expressions muy be pu-
stored by considering each coordinate x to specify a component index as well as a

position and a time, €. g. the function £ (x) is acwuudly a set of four fufictions { {r, t)
for gt =.1,-++ 4, ate,) ' -

It is convenient, at this point, to introduce the abhreviatios .

) 1
e(x, k) = iiiig;f_}a u (r) e *ut , (14. 26)

which permits ug _tu write the expansion of the operator E{* i terms of the mode

' functtons as

[ 0] ‘
E" (0= Jelx, 1 a,.
. o
Then when we use the P-representation for the density operator with the Gaussian
weight function {14, 19) » the generating functional (14. 23) may be writlen as

'iukiz 1
T e fe "f;;; e Efctn e {uxdap a's

(14.27)

e Iin{xbe{rkiadl
x 1<, >

nd’ oy { 14, 28}

This multiple integral factors intg a product of integrals, one for each mode k. I
we Introduce the palir of complaex parameters

By = Je(x) er(x, k) a'x
Yoo [alx) e(x, ¥) d'x, (14.29)
the integrat fac:br-fnr\;ﬁé_kfih mode -takgs the famitiar .form




-
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. ]
fexp % lal {14.30)

d'a ;
<fhy ¥ thoat vy ak{ T ;k> merp {Byya<ne >}

Hence the generating functional is given by the product

E"'..::Ikl exp {8, ¥y <0, }
=axp{ fe(0 T e*(x, Welx, k) <ny>u{¥)d'xd'x}. (14.31
|}

Now, according to Eqs. {14, 13} and {14. 28}, the {irst order correlation funciien
for the [ield is given by the expansin

a'? {x, x') = E e*{x, k} e{x X} <ny>,
i 3
which is just the sum which ccours in the exponential function of Eq. (14.31).
Hence the generating functional for the correlation functicns of all orders may be
expressed in terms of the first order correlation function as

{ 14,32}

Z(e0a, n(x ] = exp { K6V (x, xin(e) a'xa'x ).
. (14, 33)
We may now derive explicit expressions for the higher order correlation
functions by evaluating the appropriate functional derivatives. In particular the
n-th derivative with respect to £ may be wrilten as

or z (& fa® o =
m - E-Il J‘G (x;, x'In{x')d x} 2. (14.34)
To evaluate the n-th order eorrelation function we must next differentiste n times

with respect to the functiony, Since {{x) is [inally {o be sel equal to zero it is
£asy to see that all of the terms which come from differentlating the factor = en

™ the right side of Eq. {14, 34} with respectto 1y will {lnzlly vanish. Hence we have

simply
g2 -
Bo{x:) & (xa} tp{xars} " By xa) = I( L

g =9

éﬂ

- 2 o (1} .
ey e B 6T Gy et

2 W
=7 0c
ro

’ {14.35)
P

(s Xpauep
1. 8., the derivatlve is a sum taken over the n! poasible ways of permuting the set
of coordinates X,,;,**“ Xz, . Since the derivative we have evaluated, according to
£q. (14, 25}, 18 the n-th crder correlation function, we have finally

2
G (X0 %ay Xt Kga) = ), 1 G (%), Xppap )o (14.38)
P o

The n-th order correlation function for Gaussian fields ls just 2 symmetrical sum
of products of firgt order correlation functions, -

To illuatrate this result for the second order correlation function we may
wrl e

G'? (e, xex) =G0 (x;xs)Gm {xax4)
(14.37
B

+ G( (K:xﬁ(}(“(xzxs)-

R. J. GLAUBER 151

Now if the leld in question possesses [irst order cohersnce, we may write the
first order correlation funciion in the factovized form of Eq. (7. 15). The two
terms of Eq. {14.37) are then equal and we find
1 .
S (x50, xXe) =28%(x1) 62 (%2) & (xs) Elxe) . {14.38)
The second order correlation function faclorizes, bul because of the presence
of the factor of 2, it does so in a way which precludes the possibility that the fleld
has second or higher crder coherence. The n-th order correlation function for
such fields in evidently given by
2n
n n ¢ (X.l) .
Jenri

G™ixoxg) =l N1 6 *(x) (14.39)
p=1

QUASIPROBABILITY DISTRIBUTION FOR THE FIELD AMPLITUDE

Whenever the density operator for the field may be specified by means of the
P-representation the function P({ax}) plays a role analogous to that of a probabil-
ity denslty for the indlyidual mode amplitudes ax. Of course when we make mea-
surements upon & light beam, we are typically measuring not the individual ampli-
tudes a,, but the average values of various functions of the complex {ield streagth
elgenvalue, § (rt}, ‘which is & particular linear sum of the mode amplitudes,

§{x,{a}) = i:, e(x, k) a,.

To describe the fullest variety of such measurements which we can make al a
single ppace-time point 2 = {r, t}, it i convenient to derive from Pi{a }} a
speciea of reduced quasiprobability distribution for the complex field amplitude
£(x, {ax}). . This distribution tunction for the field amplitude will be quite ugeful
in discuasing the origin of the photon correlation effect discovered by Hanbury
Brown, and Twiss.

To illustrate the kinds of averages we frequently want {o discuss, let us note
that the average intensity of the fisld at the point x is

6! (x 0 = [e({ad) Is(x{a,})[ d'a,,

(14. 46)

{14.41)

" and the average colncidence rate for the iimiting ease in which the two counlers

are placed at the same point and are sensitive at the same time is

6" (xx x 0 = fedab | stxlad) |1 da,. (14.42)
These are ¢xamplea of a general class of averages which take the form
Jeda) Fle(x{ah) T d'a, (14.43)

for guliably determinéd'fu.nctions F. It is convenlent now to separate the muitl-

dimensional integration over the complex amplitude parameters a, into twg steps,
the integration over the subspace of the o, -parameters in which the linear combina-
tion v

‘1

g(x{a}) = Te(x, kg,

remaing constant, and then the further integration over the values this sum may
take on. The first of these integrations is accomplished by defining the function

wie, x) = [PUa}) 8706 -1 elx, K) a) Nda, (14. 44)
k

iy
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We may then write the complate integral {14, 47} In the form
Jetia) Fg Olag ) 0 e, = JI P, ) 6705 - etx, khay)
[
F( & ) i dzﬂ‘kdz é
K

= fwig, © Fg)d's, (14.45)
where d*S = d{Re &) d(In & } is a real element of area in the complex field ampli-
tude plane, The function W(&, x) delined by Eq. (14.44) evidently plays a role
analogous to that of a probability distribution for the complex field amplitude at
the space~time point x, Of course, since the function P from which it ig derived
is only a quasiprobability distribuiion, and ig subject to all the restrictions
mentioned in the last lecture, the same limitations will apply to the physieal in-
terpretation of the function W{ &, x}. It too can take on negative values, for ex-
ample, ) . .

The function W furnishes a particularly simple description of flelds which con-
sist of many independently excited modes, Since the total fleld amplitude § is then
the sum of a large number of irdependently distributed complex amplitudes pro«
portional to the o.. the distribution of the amplitude € wil, correspond to that of
the endpoint of & nany-step raniom walk in the complex plune. - This disteibution
tends 1o take on a Gaussian form when the numbar of contributing modes is large,
o inatter how the mode ampliludes may be distributed individually. From a
niathematicul stuadpoiiv Lhis acgument dilfers hardly at all from the discussion of
the cenirad it thearen ziven in Section VI of the reprinted paper; i.e,, the
Surting poin, Ky, (14,4491, becomes simllar in structure to Eq. (R 8,1} when
Ui tunctbon P{ieg ) is assumed Lo [actorize into a product i P {ay}. Asaslight

generalization of the discussion wiven there we may let the individual mode ex-
citatiuns by non-shdionary In character and have mean amplitudes
Ip, {a,) a, d’ay = A T {14. 46}

Then by applying the central limit theorem, we find

. o 1
Wie, xb = ey M <le, s e

f14, 47}

x| 1€ = Ex e(x, k) <ay> |2 }
PV E el O < ] TS I<ay > (%]

If the mean amplitudes < ay > vanish, as they do for example in the case of
slationary flelds, we have

1
#Zyle{n, k) T<ny > exp

WiE, x) =

{_ 1617 }
i)k]e(x, k)13 n, >

1 2
= ——*—'*i—--uwe‘af"’(“;_ {14, 48
1 GO (x, x) ' - 48)
To ilustrate the use of thig expression for W(§ , x), let us calculate the n-th

order correlation function with all arguments equal. By lelting F{E) = }§ P i
Eq. (14.45). we find '

G e = [ WiE, %) g™ g g, (14. 49)

. complex fleld amplitude §,
- undergoes. a considerable amount of fluctuzation, ‘Fhus, while the most probable
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For the Gaussian form of W given by Eq. (14.48), the latter Integral Is simply

G (x e x= nl{6" (x, x)e. {14. 50)
An important class of fields whick obey the separability conditions we have as-
sumed in deriving these results is that specified by the Gaussian density opera-
lors discussed earlier. For these fields, in fact, Eq. {14.50) fottows directly
from Eq. (14.36), But since we have not had {o assume that the funetions P{a,)
are individually Gaussian in form to derive Eqs. (14,48) and (14,50}, these
regults evidently hold true for & considerably broader vartely of fleld excitations,
A sketch of the Gaussian distribution function W(&, %) is givenin Fig. 13.
Since this functlon: plays a role akin to that of a probability distribution for the
it 13 evident that the absolute magnitude of the field

value of the fieid amplitude is £ = 0, the amplitude will oceasionally stray out

wig,x}

“Re§ Imé&

Figure 13

into the regiong of the complex plane which represent the “tail"* of the Gaussizn
and correspond. to arbltrarily strong flelds. The relation (14, 50) between values
of the cortelation hinctions may also be stated ag the relation

<HEE™ >=nt {151 >} (14.51)
between average moments < | & | > of the function W, The extremely rapid in-
crease with r of the ratioc <{§1™ > /{ <161* >}°, which the Gaussian distri-
bution shows, 13 due ta it5 ' long-tatled? character,

Although the Gaussian form for the funetion W&, x} will presumably apply
almost universally to the radiation from matural or essentially chaotie sources,
altogether different Mstributions may be required to describe the radiation from
cerlain man-mide sources, I fact the avoidance of fields which have the ex-
tremely: riind r nbisy character of the Gaussian form of Wl &, x} has besn one

of the major goals of radio-tregiency’ technology. One of its earliest accomplish~

- ments.was the developinént' of osciliators which genérate lields of extremely stable
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macinlus, €. g. broadeast carrier waves, These osciﬂators zre non-iinear de
vices zud the contributions of the various mode amplitudes to the total fleld are
not at all independently distributed as tn the Gavasian cage. For a stationary

fleld generated by such an oscillalor we might find the function W(E , x} to assume
a farm similar to that shown in Fig. {14}; L. e., the modulus of the fleld, (£,

wWig,x)

g’ Re & Tmé&
Figure 14

has only a very small probability for taking on values either appreciably smaller
or farger than its root-mean-square value, {<jg {*>}

The shape of the [unction W{ %, x) furnishes an elementary insight into the
origin of the photon correlation effect which was diacovered by Hanbury Brown
and Twiss by means of the experiment described In Lecture VL. - Let us consider
the two-lold coincidence counting rate for photons when the two delectors Dy and
D: of Fig. 8 occupy precisely symmetrical positions relative to the hall-sflver-
ed mirror m, and when the detectors are adjusted so thal they register coincidences
with no time delay. Since the arrangement is one in which the counters, in effect ,
occupy the same position and are sensitive at the same time, the coincidence rate
is given by a correlation function of the form : :

GMxx, xx) = <101 >, ‘ ' (14.52)

Now, according to Eqs. (14.50) or {14.51), for all chaotic light sources we should
find

<z > =2 {1 >
{1}
=2{G" (x, x}}*. (14,53)
The amount by which G'2 (x %, X X) exceeds {Gm {x, }}* is a measure of the
nan-random tendency of the photons to he recorded as simultaneously arriving

pairs; L, e., i i5s a measure of the height of the "bumy’' on the colncidence rate
curve shown in Fig, 10 . 8ince the coincidence rate for zero time delay is twice

hn

-

B i s i
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ihe background or accidental coincldence rate, the corvelation eifeet ig not a small
one, {The orlginal ohservatlons of the effect were made difficall by the relatively

iong responge times of the counting systems cumpared with the time interval over

which:the ‘correlation persists.)

To see the nature of the pholon cérrelation eftect for ather types of distribu-
{ions W( 48 x} let us mte that it is proportional to .
6T (xx, 0 - {67 (x, W) =<IE XN > - < (6 (xS

= fwig, 01 {181 - <1612 > de (14.54)

One of the curious quantum mechanical properties of this expressian ig that, al-
though it resembles a statistical variance for the quantity | § 1*, 1t may actually
take on negative as well as positive values, That s true since W{§, x) as we
have noted, 18 not strictly speaking a probability distribution. It is not difficult
to find states of the fleld for which W takes on negative values at ieast locally and
for which the average { 14.54) is consequenily negative. When the fleld is in such
states photon coincidencea will be recorded with less than the random background
rate by the Hanbury Brown-Twiss detection apparatus, an effect which Is the re-
verse of the one obgerved for natural radiation sources.

Whenever the fleld is generated by an essentially classleal source, l.e., one
with predetermined behavior, it will be possible, as we have seen Lecture XII, to
construct a P-representation for the denalty operator with a non-negative weight
function P({ay}) . Then the function W( &, x) defined by Eq. {14, 44) will likewise
take on no negatlve values. We may thus state that for all classically generatable
flelds, the Hanbury Brown-Twiss correlation Is positive,

G (xx, xx - {6 (x, B} 0. (14.55)

1f the correlation effect 1a to vanish for flelda of this type we must evidently
have '

wig, n{1g1*-<g1* >} =0 (14.58)

for all§ . The function W{&, x) can therefore only take on non-vanishing values
at polnts lylng on the circle {£1% = <|&[* >. I the hunction W (&, x), in other
words, 18 of a form which allows no amplitude modulation of the field, the correla-
tion effect will vanish and conversely. In fact in that lmit we have more generally

G (xeex) = <|m"‘>=<1a;'>'={c“’ (x, x}}° (14.57)

and all n-fold colncidemce experkments show.an ahsence of any tendency toward
statistical correlationa.

A pumber of the published dtscuaslons of the Hanbury Brown-Twiss effect ex-
plain it as being caused by the fact that photons are Bose particles and consequent-
ty have a certaln tendency to cluster, That such explanations are far from com-
plete ls made evident by the fact that the quantum mechanical form of the effect
may have either sign; it may constitute an anticorrelation or "replusicm ** rather
than a positive correlation or "clumping,'* - Furthermore the fact that clasaical
fields have only a positive correlation effect {2 a clear demonsiration thai the
average quantities one evaluates by means of the correlation functions {even where
the P-representation exists} are not always equivalent In quantum theory and
classical theory, The variety of fields encountered in the quantum theory is sim-
ply much larger than that aliowed by classical theory.

It should be evident that the measurement of the photon correlatiop effect, at
least at zero delay time, simply furnishes a measure of the amount of random

w
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amplittde moduiaiion present in fields with positive W{&, x). The effect should
be nearly absent trom the field generaled by a well stabilized ocscillator, In
particuiar gince o gas laser operating well above its threshold iz presumably quite
a stable oscitlator, any Hanbury Brown-Twiss carrelation found in its beam should
be quite small in magnitude,

: The fact thit a photen correlation experiment, or its analogue in the radio-
{requency region, an intensity corrveiation experiment, ¢an furnish a simple way
of telllng whelher a radiatlon fleld comes from a natrual source or a man-made
one could have some interesting if rather far-fetched astronosmical tousequences,
If intelligent beings elsewhere in the galaxy want to communicate with us, it seems
reasonable to suppose that they would use amplitude-stabilized oscillators of some
sort as radlators, In that case their signals, as we have seen, would have an upmig-
takable character even when no message was being transmitied. In fact the wn-

moduiated signal could be easier to distinguish from background noise than the
modulated one,

QUASIPROBABILITY DISTRIBUTION FOR THE FlELﬁ AM.PLPI’UDES A;T TWO
SPACE-TIME POINTS

A number of the correlation functions and other expectation values which In-
terest us depend on the fields at iwo different Bpace-time points x; and x;, These
averages may be expressed, when the P-representation exists, in the general form

fetlad) FLECu{mD), 6 (xafa ) I d'a,
where the function F is suitably defined for each case, Two fam:lar examples of

£4ch averages are the first order correlation function G4 {x:. x;), for which we
wo- 1d choose

{14,58)

F= §*x {Cl'k}) & (%3 {ag})r

and the delayed coincidence countleg rate, gt {x1%2, %3x,), for which we would
choose

{14.59)

F=i§{x {ak})li_ 16 (Xa_ {ﬂm})ﬁa- (14.60)

Now, if we define a specles of distribution function W{ 12, £1x,), for the
complex {ield amplitudes at the two points by means of the relation

WIBxi, Gaxad = [o({a])8 P8, - € (i {a}) 8 (64 - 6(xs o 1)) na'a
' {(14.81)

E?

then an average quantity of the form (14,58} 1s given by the integral

TWig xi, 6axa) FU6 1, £2)d7 £,4% 6. (11.62)
Thfe function W& 1x,, £,x:) » more specifically, ig a quasiprobability disiributicn
which plays the same role in averaging functions of two space-time variables as
the funetion W(&, x), which we discussed earlier, plays in the caleulation of
averages lor a gingle space-time point. ‘We may, in fact obtain W{&, x) from

the two-point function by lntegrating over either of the field variables,

W(s, x) = [w(éx, & x) d2&"

= [W(ET ¢, ¢ x) dier. {14. 63)

—_
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When the function P({a,}} factorizes into a product of independeant wekght
functiens, one for each mode, “and when the number:of exciied modes is lurge, it is
easy lo show, again by techniques gimilar to those used in section VI of the re-
printed paper, that W{& 1%,, & 2%} assumes a Caissian form In the two complex
amplitude variables £, and £5. To carry out the dertvation we simply show that
the double Fourier transform of W{E 1%1, 6 1%z) with respect to the amplitude
variables £, and §'5 i agymptotically Gaussian in form when the number of excitad
modes becomes tnfinite. Inversion of the transform then yiglds a resull which, for
the case of stationary fields, can be written as

1 .
X
T (xyx,) GLY (x,x:){l - lgt® (x,xz)iz}

W(@ixigg nxi) =
[ 3 Gz‘g“] {x1%,) (14.64)

+ et
T 1
{67 (%) 6" (aax)}

Gt (*zx'.') .
1~ ;g‘_" (xx2) 17

g1
Gih {x:%,)

exp «

where g“' "8 the normalized form of the first order correlation function defined
by Eq. (7.5). As a simple check of this result it is easy to verify that the average
of the function (14.59) is

. i 11
6" xS (axa)} g™ () =6 (xix) (14.65)
as required, and that the average of the function { 14. 80) is indeed
G{n (x,,xi)(im(x,,'x;) + |G“) (Xl, Xa) i' = Gu, (xﬁi‘.a, XzXL). (14.55)

The functlon W{ £ (%1, § 2%} plays a role in the theory which is analogous to
that of a probability density for a compound event, 1. €., finding the field &, at x,
=(re, t;) and 64 at x; = {r2, t3). In probability theory it is often of interest, in
dealing with such compound events, to imagine that the first part of the event has
already taken place and to calculate the probability that the compound event is then

~completed. We may defllne an analogue of such a conditioned probability function
' by means of the relation

WE Xl Eaxa) = L1 Xy Eaka) (14.67)

COW(E L, )

where W(¢'y, 1) 18 the function defined by Eq. (14.44). The function W{ & x|
£2%a) is analogous to a probability density for the field amplitude to have values
in the neighborhood of 3z at xz = {ra, &), given that Ut had the value £, at x, =
{ry, t,). We shall call the function the conditioned quasiprobability density; it s,
strictly speaking, only measurable ag a probability density in the classical or
strong field tmit.

When we calculate the ratio of the functions given by Eqs. (14.64) and (14. 48)
we find the result

1 I

TG0 () [ 11800 ()17}

W(E 1% Eaxg) = (14.58)

- *
X - €1 g (ki)

) : :{_Gm (szz}}% . .{.G“].(X:Xl)}%
S e s - - '
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